a2 United States Patent

Stark

US009342313B2

(10) Patent No.: US 9,342,313 B2
(45) Date of Patent: *May 17, 2016

(54) TRANSACTIONAL MEMORY THAT

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

SUPPORTS A GET FROM ONE O
RINGS COMMAND

F A SET OF

Applicant: Netronome Systems, Inc., Santa Clara,

CA (US)

Inventor: Gavin J. Stark, Cambridge (GB)

Assignee: Netronome Systems, Inc., Santa Clara,

CA (US)

Notice: Subject to any disclaimer,

the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 219 days.

This patent is subject to
claimer.

Appl. No.: 14/037,239

Filed: Sep. 25, 2013

a terminal dis-

Prior Publication Data

US 2015/0089165 Al Mar. 26, 2015

Int. Cl1.

GO6F 13/00 (2006.01)

GO6F 9/38 (2006.01)

GO6F 9/30 (2006.01)

HO4L 12/741 (2013.01)

U.S. CL

CPC GO6F 9/3836 (2013.01); GOGF 9/3004

(2013.01); HO4L 45/74 (2013.01)

Field of Classification Search

CPC GOG6F 3/061; GOGF 3/0628; GOGF 3/0653;

GOGF 3/0656; GOGF 3/0659;

GOG6F 12/0623;
GOGF 13/1673

USPC ... 711/151, 154, 156, 165; 710/36, 40, 52,
710/53, 56, 120, 310
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,208,809 A * 5/1993 Fergesonetal. 370/545
6,112,267 A * 82000 McCormack et al. 710/52
8,972,630 B1* 3/2015 Starkccoceovvvnen 710/54
2015/0089095 Al* 3/2015 Starkccoooovveveivrennnnnn. 710/54

* cited by examiner

Primary Examiner — Reba 1 Elmore
(74) Attorney, Agent, or Firm — Imperium Patent Works
LLP; T. Lester Wallace; Mark D. Marrello

(57) ABSTRACT

A transactional memory (TM) includes a control circuit pipe-
line and an associated memory unit. The memory unit stores
a plurality of rings. The pipeline maintains, for each ring, a
head pointer and a tail pointer. A ring operation stage of the
pipeline maintains the pointers as values are put onto and are
taken off the rings. A put command causes the TM to put a
value into a ring, provided the ring is not full. A get command
causes the TM to take a value off a ring, provided the ring is
not empty. A put with low priority command causes the TM to
put a value into a ring, provided the ring has at least a prede-
termined amount of free buffer space. A get from a set of rings
command causes the TM to get a value from the highest
priority non-empty ring (of a specified set of rings).

24 Claims, 20 Drawing Sheets

| VEM | | VEM | | oo | ‘ MEM | MEM ‘
£ £ [)2 P2 !
S2BITODRPHY | 32BIT DDRPHY GPI0 32BITDDRPHY | 32 BIT DDRPHY
17 18 23 19 20
ENGS ENGS
dor| M| e
EXTERNAL MU1 2 & 2 EXTERNAL MU2
SERDES SZM ME ME SRAM
CLUSTER(1) | cLUsTER() @ =
SERDES 2 28 GBPS
SERDES VE VE RDES‘%:
por() | cwsteRgy | FTOBUK | poggy | oler | 13 ete
SERDES o ER {4) [[seroes 4
2 X a 2 a 1| B
28 Lseroes | ME EROES
CEE 9 | oLust | crypTOBULK ME 4 10x10 GIEY S0 L
h CSTER() | B] T00GEE WG s
25 | serpes | ERG) @ % . e Ly
GBS~ 110| 34 38 LY 38 P16 4
ENGS| ™Nes
&ﬁy INTERLAKEN v FOR || INTERA For | e
% LA (1) CLUSTER {7} MUt LA{2) EMU3 SERDES
65559 2 | Aa 4 & 8
;mg--»/w// SERDES
]
A_ﬁ/ INTERNAL MU1 EXTER) MU3 SERDES
! —_—
ENGS SRAM
FOR 52 5
i \ oPI0
INTERNAL MUZ 4
SRAM
ME CLUSTER crio
51 ® a2emgorgfly | a2 DbRPHY
48 21, a2

SMALLEST FLOW
SECOND SMALLEST FLOW
SECOND LARGEST FLOW
LARGEST FLOW

ik

U.S. Patent May 17, 2016 Sheet 1 of 20 US 9,342,313 B2

3 3 $ $ 8

MEM MEM Cer\g,\l,lG MEM MEM
T T | T T,
32BITDDRPHY | 32 BITDDRPHY GPIO 32BITDDRPHY | 32 BIT DDR PHY
17 18 23 19 20
ENGS ENGS
FOR FOR
EMUA ARM EMU2
EXTERNAL MU1 24 25 26 EXTERNAL MU2
R SRAM SRAM
49 ME ME 50
CLUSTER(1) | GLUSTER (2) = 25
SERDES 27 28 GBPS
ME RDE8‘4
SERDES ME CRYPTO BULK CLUST 13 [GBPS
PCIE (1) CLUSTER (3) 1 PCED | fra o e
SERDES)) [{seroES 4
29 30 31 32 33 A 14| B
2%
ERDES | ME [/SERDES
CBESPN 9 | cLust| crypToBULK ME > 1_5‘/25'
i) CLUSTER (6) GBPS
o5 | seRpEs | ER(9) @ SERDES | "y
cBPSr~110| 34 35 € 38 P16 4
=" | ENGS
% | sEAdEs ENGS | serpes
GBPS 3~ 1] 11| INTERLAKEN ME/ FOR § INTERLA FOR
LA (1) CLUSTER (7) IMU1 LA (2) NEMU3
2 | SHHES SERDES
cispalllizl a0 N w0 U gy 42 8
10 X 10 GBE / / / SERDES
10068%*’\“3'%
45 46 SERDES
45 46 INTERNXL MU1 exTERKAL MU3
ENGS SRAM
FOR 52 53
s //‘ GPIO
INTERNAL MU2 47)
SRAM
ME CLUSTER GPIO
51 ®) 32BTADRAHY | 328]T DPRPHY
48 21 22
T
— 5 SMALLESTFLOW }
——3 SECOND SMALLEST FLOW JEM /=
e SECOND LARGEST FLOW <) U
e LARGEST FLOW

U.S. Patent May 17, 2016 Sheet 2 of 20 US 9,342,313 B2

! L

MASTER POSTS A WRITE COMMAND TO TARGET ACROSS THE
COMMAND MESH.

102
v 2
TARGET RECEIVES THE COMMAND, DETERMINE WHAT ACTION
TO TAKE.
103
v g
TARGET POSTS A PULL-ID TO MASTER ACROSS THE PULL-ID
MESH.
104
v J

MASTER USES DATA REFERENCE TO FIND DATA AND SENDS
DATA TO TARGET ACROSS THE DATA MESH.

I i

TARGET RECEIVES DATA AND WRITES INTO MEMORY.

WRITE OPERATION

FIG. 2 110

. J
MASTER POSTS A READ COMMAND TO TARGET ACROSS THE
COMMAND MESH.
112
v g
TARGET RECEIVES THE COMMAND, READS DATA.
113
v 2
TARGET PUSHES DATA TO MASTER ACROSS THE DATA MESH.
114
v g
MASTER GETS DATA AND WRITES INTO MEMORY.

READ OPERATION

FIG. 3

U.S. Patent May 17, 2016 Sheet 3 of 20 US 9,342,313 B2

BUS TRANSASETION VALUE

A

MET?EATA PAYLOAD 56
Pl AN .
P S ¢ 0 N
COMMAND
FINAL DESTINATION | ... | _ ____comvalb _____.
(ISLAND NUMBER) | VALID PAYLOAD _____F P g'p—%? ________

META DATA AND PAYLOAD

FIG. 4

FIELD WIDTH DESCRIPTION
TARGET 4 CPP TARGET FOR THE COMMAND.
ACTION 5 ACTION RECOGNIZED BY THE CPP TARGET INDICATING
WHAT SHOULD BE PERFORMED.
TOKEN 5 SUBTYPE OF ACTION RECOGNIZED BY THE CPP TARGET,
INDICATING THE FLAVOR OF THE COMMAND.
LENGTH 5 LENGTH OF THE COMMAND, DEPENDENT ON THE ACTION/
TOKEN, INTERPRETED BY THE CPP TARGET.
ADDRESS 40 ADDRESS THAT THE COMMAND SHOULD OPERATE ON.
BYTE_MASK 8 FURTHER OPTIONS OF A COMMAND (A BYTE MASK).

DATA_MASTER_ISLAND

ISLAND OF DATA MASTER.

DATA_MASTER

MASTER WITHIN THE ISLAND.

DATA_REF

14

PUSH-PULL ID REFERENCE INDICATING TO THE DATA
MASTER WHERE TO PUSH/PULL FROM.

SIGNAL_MASTER

10

EXTENSION FOR DATA_REF AS A DATA MASTER ONLY; FOR
OTHER MASTERS INDICATING WHICH MASTER WITHIN THE
DATA MASTER'S ISLAND SHOULD BE SIGNALED FOR THE
COMMAND.

SIGNAL_REF

REFERENCE WITHIN THE SIGNAL MASTER AS TO WHEN
SIGNAL SHOULD BE INDICATED WITH THE COMMANDS PULL
OR PUSH.

COMMAND PAYLOAD

FIG. 5

REF

U.S. Patent May 17, 2016 Sheet 4 of 20 US 9,342,313 B2
FIELD WIDTH DESCRIPTION
TARGET_ISLAND 6 ISLAND TO RETURN PULL DATA TO.
IDENTIFIES THE SUB-CIRCUIT IN THE FINAL DESTINATION
TARGET_PORT 2 ISLAND THAT IS THE TARGET (OF A MULTI-TARGET ISLAND).
TARGET REF 14 | TARGET SPECIFIC REFERENCE; RETURNED WITH PULL DATA.
DATA_MASTER 4 MASTER WITHIN THE ISLAND.
FUSH-PULL ID REFERENGE INDIGATING TO THE DATA MASTER
DATA_REF 14 | WHERE TO PUSH/PULL FROM; NORMALLY COPIED FROM THE
INVOKING COMMAND.
EXTENSION FOR DATA_REF AS A DATA MASTER ONLY; FOR
OTHER MASTERS INDICATING WHICH MASTER WITHIN THE
SIGNAL_MASTER 8 DATA MASTER'S ISLAND SHOULD BE SIGNALED WHEN THE
LAST DATA IS PULLED.
| REFERENCE USABLE BY THE MASTER TO DETERMINE WHICH
SIGNAL_REF SIGNAL SHOULD BE INDICATED WITH THE LAST PULL DATA.
ENGTH ; NUMBER OF 64-BIT DATA WORDS TO PULL FROM THE DATA
MASTER, STARTING AT THE SPECIFIED DATA_REF.
PULL-ID PAYLOAD
FIELD WIDTH DESCRIPTION
DATA_IS_PULL 1 ASSERTED FOR PULL DATA.
DATA_MASTER OR_ | , | DATAMASTER FOR PUSH DATA OR TARGET PORT FOR PULL
TARGET_PORT DATA.
DATA OR_TARGET_ | 14 | DATA REF FOR PUSH DATA OR TARGET REF FOR PULL DATA.

SIGNAL_MASTER

ONLY USED FOR PUSH DATA; MASTER IN ISLAND TO SIGNAL IF
DATA_MASTER IS NOT CTM; EXTENSION OF DATA_REF FOR
DATA MASTER OF CTM.

SIGNAL_REF_OR_

SIGNAL_REF FOR PUSH DATA OR CYCLE FOR PULL DATA.

CYCLE
ASSERTED WITH THE LAST WORD OF DATA FOR PULL OR PUSH
LAST 1
DATA.
DATA 64 64-BITS OF PULL/PUSH DATA.
ONE BIT PER 32-BITS OF DATA TO INDICATE AN
DATA_ERROR 2 UNCORRECTABLE ERROR.
DATA VALID 2 ONE BIT PER 32-BITS OF DATA TO INDICATE, ON PUSH, THAT
= THE DATA IS TO BE WRITTEN TO THE DATA_MASTER.
FOR PUSH DATA ONLY, ASSERTED FOR SIGNALING TO
NO_SPLIT 1 INDICATE THAT BOTH SIGNAL_REF AND SIGNAL_REF1 ARE TO

BE INDICATED TO THE SIGNALED MASTER.

DATA PAYLOAD

FIG. 7

U.S. Patent

May 17, 2016 Sheet 5 of 20 US 9,342,313 B2
FIELD WIDTH DESCRIPTION
DATA_IS_PULL | 1 ASSERTED FOR PULL DATA.

TARGET_PORT

IDENTIFIES THE SUB-CIRCUIT IN THE FINAL DESTINATION
ISLAND THAT IS THE TARGET (OF A MULTI-TARGET ISLAND).

TARGET_REF

TARGET SPECIFIC REFERENCE, RETURNED WITH PULL DATA.

CYCLE-OF_PULL

CYCLE OF PULL DATA.

LAST 1 ASSERTED WITH THE LAST WORD OF PULL DATA.
DATA 64 64-BITS OF PULLED DATA FROM THE DATA MASTER.
ONE BIT PER 32-BITS OF PULLED DATA TO INDICATE AN
DATA_ERROR 2 UNCORRECTABLE ERROR FROM THE DATA_MASTER DATA
SOURCE.
DATA PAYLOAD (FOR A PULL)
FIELD WIDTH DESCRIPTION
DATA_IS_PULL 1 DEASSERTED FOR PUSH DATA.

DATA_MASTER

PUSH ID WITHIN THE ISLAND OF DATA MASTER THE DATA IS
DESTINED FOR.

DATA_REF

14

REFERENCE WITHIN DATA MASTER AS TO WHERE TO PUSH
FROM.

SIGNAL_MASTER

FOR CTM AS A DATA MASTER ONLY THIS IS AN EXTENSION FOR
DATA_REF; FOR OTHER MASTERS INDICATING WHICH MASTER
WITHIN THE DATA MASTER’S ISLAND SHOULD BE SIGNALED
WHEN THE LAST DATA IS PUSHED.

REFERENCE WITHIN THE SIGNAL MASTER AS TO WHICH

SIGNAL_REF 7 SIGNAL SHOULD BE INDICATED WITH THE LAST PUSH DATA.

LAST 1 ASSERTED WITH THE LAST WORD OF PUSH DATA.

DATA 64 64-BITS OF PUSH DATA FROM THE DATA MASTER.

ONE BIT PER 32-BITS OF PUSHED DATA TO INDICATE AN
DATA_ERROR 2 UNCORRECTABLE ERROR FROM THE DATA_MASTER DATA
SOURCE.
ONE BIT PER 32-BITS OF DATA TO INDICATE THAT THE DATA IS
DATA_VALID 2 TO BE WRITTEN TO THE DATA_MASTER.
ASSERTED FOR SIGNALING TO INDICATE THAT BOTH
NO_SPLIT 1

SIGNAL_REF AND SIGNAL_REF1 ARE TO BE INDICATED TO THE
SIGNALED MASTER.

DATA PAYLOAD (FOR A PUSH)

FIG. 9

U.S. Patent May 17, 2016 Sheet 6 of 20 US 9,342,313 B2

INGRESS
NB |— 46
ISLAND
FIRST BYTES OF PACKET AND
INGRESS PACKET DESCRIPTOR
(FOR AN EXCI%ZP;I'ION PACKET)
FIRST BYTES OF PACKET AND
INGRESS PACKET DESCRIPTOR
(FOR A FAST PATH PACKET) ME ISLAND
120 40
T AT En IN MEMADY, e—— T |
LOCATED IN MEMORY
| IN THE CLUSTER IP/ETHERNET ||
| LOCAL SCRATCH TABLE |
| 160 |
| . I
| POINTER TO THE FIRST BYTES OF POINTER TO THE FIRST BYTES OF |
| THE EXCEPTION PACKET AS 146 THE EXCEPTION PACKET AS |
Loy STORED IN CTM j STORED IN CTM 13!
: ((TO THE ARP RE%E’ONSE PACKET) RING 3 (TO THE ARP RE1§2PONSE PACKET) v :
| |
I | RXME 4 RING OF BUFFERS s REShONGE | !
L] (ME2) LOCATED IN LOCAL ME |
I \ LUSTER SCRATCH) E METD) ||
| RECEIVING ME ARP RESPONSE ME ,
| |
PACKET DESCRIPTOR
J:’(FOR FAST PATH PACKET)
120
y
EGRESS ARP = ADDRESS RESOLUTION PACKET.
NBITX [— 37 ARP PACKETS ARE USED TO DETERMINE WHICH DEVICE OWNS A SPECIFIC IP ADDRESS.
ISLAND EACH DEVICE IS IDENTIFIED BY ITS ETHERNET ADDRESS.

l

A PAIR OF MICROENGINES COMMUNICATE
USING A RING OF BUFFERS

FIG. 10

U.S. Patent May 17, 2016 Sheet 7 of 20

EB (EVENT BUS)

US 9,342,313 B2

CB (CONTROL BUS)

DB (DATA BUS)

/_L_ﬂ_\ ME 12
ACCESSES THE
CLS THROUGH
z al| |THE DB ISLAND
B =82 Z|| eRicE
o= < o= =
aC a S =
o al]||*= 8 / 40
{
EB /
14
- bl g/
DATA BUS ’ RESPONSE
IP/ETHERNET INTERFACE ME
TABLE 137 134
160
133
1
SIXTEEN - A@’ 77
RINGS
144-159 ME 2
o8 ACCESSES THE
CLS THROUGH
THE DB ISLAND
BRIDGE
7€ LL e
4 124
/MEM /L 149

PULL
\
DATA BUS
INGRESS PACKET INTERFACE
DESCRIPTOR ~ HEADER
212 PORTION
141
ME ISLAND

FIG. 11

US 9,342,313 B2

Sheet 8 of 20

May 17, 2016

U.S. Patent

¢l Old

HO1VdOS TvO01d3LSN1O

|
“ NOILYOd _
| $5300V AHOWIW |
I |
. 661771 _ <M
|
| T S T
L e — —— = — A0
| . B8OV age [H N _”_H RPN
\ [— I > i &
“ 1 ; 't Sovis aum H “ T AR
! % oz |1 iy 1Ins3y i !
! V[.,uv, ol 777 il Nl
_ EN R, A 89 | 1 [39V1S 31n03X3 _ 002 P !
! ; L1¥0d | |(sLigve) T i < Py 2l
I [o9) F18VL LaNYIHLZ-OL-dI wlva _“ 3IT hil I T E T _
i TS || 3ov1s 11nd | | susze gy ! o red
R Hie |
| 69 A=t HER ¢4 L] | 2 (3N duv)
| Z140d | [29viS Livm Hol - = (4l
[oz | 1N L 1| S
e e e _ T ! e
[— _ JOVIS avIy b — 1| 8 =
| —> 71} _ ._.mm_:om_m_ e i L || 4
i 3NIONZ VAN | avd | |7 %AI _ 661 A
|| —— Lp{39v1S 40 ONIY _ PvMETIT_ - KD En)
| T | z%ﬁmmo.\ﬂv 53000 o | o 1L =
|| > _HOLYHAND | DN I 40 T SHOLdINOS3a [
11 [y3BRANWOONWY | | _ ONIY I amnd L
| — |
| | W d o e R
Ly — | | LUOLYISNVYL mmooomof{u N =
LT ugovnvi INaAT | | _ 91 o REELR
| | _ 044 NOILY43d0 | avvanoo P9y L L
||||||| R !
)
£9l -—_———— ———— ==] L
STV3HdINAd !
gss NI | o
e R e
=0 9l
83 83 HOLYNOS TY00T ¥31SN10

U.S. Patent May 17, 2016 Sheet 9 of 20 US 9,342,313 B2

,<— SIZEg — 3
211

|
|
AlL HEAD
BASE !
ADDRESS PO'(N}ER POMER ! RING 3
| 206 207 208 | / 146
|
NI N N
slals]| | 012
|
! 7
TAIL HEAD
BUFFER BUFFER
209 210
EACH BOTFERS RING OF BUFFERS

FIG. 13

OFFSETFROM OFFSET FROM
RING BASE ADDRESS BASE ADDRESS BASE ADDRESS SIZE OF
NUMBER OF RING __ TO TAIL BUFFER TO HEAD BUFFER THE RING

A

179 > 1 BASE T H SIZE
180 ——P 2 BASE T H SIZE
181 —> 3 BASE 20 T g7 H 08 SIZE 211
[]
[]
[}
194 ——>16 BASE | T | H | SIZE

RING DESCRIPTORS

FIG. 14

U.S. Patent May 17, 2016 Sheet 10 of 20 US 9,342,313 B2

300
¥

! s

INGRESS NBI WRITES ARP RESPONSE PACKET INTO INTERNAL SRAM ISLAND 52 VIA
ISLAND 42.

392

A 4

RX ME SUPPLIES A “PUT INTO RING” COMMAND TO CLUSTER LOCAL SCRATCH TO PUT A
POINTER TO THE ARP RESPONSE PACKET INTO RING 3.

v 393
RING OP STAGE IDENTIFIES A FREE BUFFER AT THE TAIL OF RING 3.
v 394
WRITE STAGE WRITES THE POINTER INTO THE TAIL OF RING 3.

v 395
ARP RESPONSE ME SUPPLIES A “GET FROM RING” COMMAND TQ CLUSTER LOCAL
SCRATCH TO GET THE POINTER TO THE ARP RESPONSE PACKET FROM RING 3.

v 36

RING OP IDENTIFIES THE BUFFER AT THE HEAD OF RING 3.

v 397
READ AND EXECUTE STAGES RETRIEVE THE POINTER FROM IDENTIFIED BUFFER, AND
RETURN THE POINTER TO THE ARP RESPONSE ME.

y 38
ARP RESPONSE ME USES THE POINTER TO READ THE ARP RESPONSE PACKET FROM
INTERNAL SRAM ISLAND 52 VIA ISLAND 42.

! 39

ARP RESPONSE ME LEARNS ETHERNET SOURCE ADDRESS (ASSOCIATED WITH THE IP
SOURCE ADDRESS OF THE SENDER OF THE ARP RESPONSE PACKET).

v 310
ARP RESPONSE ME AS A MASTER POSTS A "WRITE TO MEMORY" COMMAND TO THE CLS
AS ATARGET. THE CLS WRITES THE ETHERNET SOURCE ADDRESS INTO THE IP-TO-
ETHERNET TABLE (IN SRAM IN THE CLUSTER LOCAL SCRATCH) THEREBY ADDING THE
ETHERNET SOURCE ADDRESS (ASSOCIATED WITH THE IP SOURCE ADDRESS OF THE
SENDER OF ARP RESPONSE PACKET) WITH THE IP ADDRESS OF THE SENDER OF THE
ARP RESPONSE PACKET.

v

FIG. 15

U.S. Patent May 17, 2016 Sheet 11 of 20 US 9,342,313 B2

T <= (T+1) MODULO SIZE

WRITE A POINTER (TO WHERE ARP RESPONSE PACKET IS STORED IN
MEMORY) INTO SRAM AT ADDRESS: BASE + T

WHAT THE RING OPERATION STAGE DOES
IN CARRYING OUT A "PUT INTO RING" COMMAND

FIG. 16

READ A POINTER (TO WHERE ARP RESPONSE PACKET IS STORED IN
MEMORY) FROM SRAM AT ADDRESS: BASE + H

H <= (H+1) MODULO SIZE

WHAT THE RING OPERATION STAGE DOES
IN CARRYING OUT A "GET FROM RING" COMMAND

FIG. 17

US 9,342,313 B2

Sheet 12 of 20

May 17, 2016

U.S. Patent

8l 'Old

(21dNVYX3 ONIY OLNI 1Nd,) HOLYHOS V001 ¥3ALSNTO

i |
| |
| |
65L-bL
“ é 817 ! &
| 10Yd Y v
_ 33NOJS Y |l !
_ e S - R A
I by _ > ¢ G
_ /e |8 — I > R
| I 07 | 39V 3w | 3nvA e “
| \ N 70C (T |
_ \/ > 77T — “ | Aeml
! [EENER J Hmmmn_ I,.v | [39V1S 3LN93XT | 00 L o]
] L < _
! 091 JT8VL LINYIHLF-OL-d| i il pa _ | = J¢ _
| _T9T Wvas v “ JOVLS TINd _ oz 99 |1 g reb
= == — (i3]
| 3 S — Enxawodd) ! e
Il Mt B | |az ¢ 1 550w L |2 (3 duv)
| 21¥0d coz | |E2ULSLvM | IoNOdSI Y | 1 Z kI
| | = | OL¥3INIOd L S
B il et | o e — |
RN — " Lo | |Z9visavay _ 8 T
m
| INIONS VN | 13Ol | o7y < " 661]2 i
L _ 38) |39vis @0 @z_z% | T E 6 (3N x)
_ 61
R g I A E D) ! _ 0 M sbianosaa | o L
1| [msAONAoGNvy | | | SNIN “ amd !
_ - oL I
I e | 760 g6l 861 _ Q11
|
) — ! Lsosvisiv []]] <[¥3d0030jed— S [T 1 =
|1 17| y3ovNvi INaAT | ! _ 961 el ERER
b] 0414 NOILV¥43dO | aNvwod Vo | Ll
e _ i
£o1 E—_—————————— (L.
“ ST 201 S
0 I S M J 3y
91
8 836 HOLVA0S T¥301 ¥3LSN10

US 9,342,313 B2

Sheet 13 of 20

May 17, 2016

U.S. Patent

6l Old

(T1dANVX3 .ONIY WOYL 139.,) HOLVYYEDS Tv201H3LSNT1D

| |
| |
| |
651l
| L~ | /
|] o A|“| /v_l_o
" LI] ke
Cl el e m—_—————— =1 €22 [I A1
| ~ _ S o | | c)
_ & 51 |8ZF —~ T = 7 N _ N
! i 07 | 39v1S A | L !
_ p0Z ¥3LSYI | —
_ [N 4 _o_&&m R
|
! TEETTER B N umw | |[39v18 310033 “ 00z " | | |
| |09k 378VL LINYIHLIOL dI viva | sz Anl | E”_ﬂ - m¢"¢
| __Tornvys avad " 39¥18 1INd _ @ ! L1 g rer
| 3 r S P il i
e P-4~ | |5z 4 | | |2 (3 dav)
| Z140d coz | |E2uLS LV I b = chan
lw
PSR) mpn H _ .71 P B
| — ! T | |39ovisavay | L 1E —
N 7Ll _ 122 _ I B vl
! ANIONI V4N [1S3N03Y] | =~ 661 N
! I avay €Ll 4 | =
! | | |39vLs 4O ONm : 11,._”_”_”_¢_I$_ = E K m_m_\,_m_v_y_mv
[- I 0z Ol
|
_ g _ 761641 _ g, | !
| ¢ HOLYHINIO _ _ $300F P
|
| [sEinNwoaw | ! | d0 SHOLINDS3d _ = m
| — |
| e _ T SO 861 el
|
| LB HI edei—— 2 4+ 1
L1 T u2ovnwianang | ! _ 961 I 61z LB
L J | 0414 NOILY¥3d0 | GNVNOD oy L
||||||| o
" £9 e ———— ——————] A
| mémm_m_._mn__%n_ 701 o Mmﬂ
|
N I e 1 oA
) g3 a3

9¢cl
HOLVYIS Tv00T1¥3LSN10

US 9,342,313 B2

Sheet 14 of 20

May 17, 2016

U.S. Patent

0¢ Ol

(I1dNVYXT AHONTN OL FLI-FIM,) HOLVYHOS VD01 ¥3LSNTO

| |
[|
| |
63111l
“ é 872 " &<
| $S34aQY LANYTHLI == — ol
I 3HL ONIGNTONI P _
_ MINFTIRVL T === === —— o - = b o] A
| /_ _ » c am
! i 7 4 1 _”_”_”_MAIW 2
! e S0 | 39VIS I _ o) |
; 70z | =
_ ! I _ |
| W S 77T 4— bl
|
! LINS3HLE | dI \/F v T | |powsunong " 0 L o] !
] L < _
| [094 378V LINYIHLI-OL-dI %wm “ SIT p i M,l Eﬁ “ | _mA.W
| 19T [44 [¥el
| __Moiwwvas _ 39v1$ TINd _mmzm%%_._om SN . |2
| A ~ — | _
O S N C | ez P | |2 (3N dv)
| 2 1¥0d cp | |22viSivm I L = ¢han
|1 | O
[I N NS = I ! || @
H " ST 'l 1|8
BN o _ | |32ovisavay D — 8 =
o NIONE VN | 622 _] | fa
| ! 1530038 | e77 4 661 AR
X i V38 | |39v1s do onm _ M_”_”_”_JIT N m_N_\,_m_v_M‘mv
! T I 02z ¢ Ol
1
I L) | -)|
N g R TASELE _ _ ST s | @ oo
11| (3NN WOONwY | ! : _% SN _D:Lﬁn_ —
|
K e = T J2er 261 8]
L — | | LOLVISNvL 4300030 - me
1}] wgovnvwinana | | _ 961 I vz R
i] | 0414 NOILV¥3d0 | ONYWNOD o L
||||||| S
“ £l S ——————] “ _, B Gel
| ST 701 A
|
O I I A 1 BvEsELN
91
8 8383 HOLY40S T¥O0T ¥31SNTD

U.S. Patent May 17, 2016 Sheet 15 of 20 US 9,342,313 B2

RECEIVE THE
"PUT INTO RING"
COMMAND ONTO
THE CLS FROM
THE MASTER ME

401 4/-400

RING OP STAGE
RETRIEVES HEAD AND
TAIL POINTERS AND
DETERMINES IF THE
RING IS FULL

402

404 F NOT 406

FULL

CLS POSTS A

PULL_ID TO THE RING OP STAGE
MASTER ME OBTAINS AN ADDRESS

(RETRIEVE THE STORED IN THE TAIL

DATA TO BE PUT (INCREMENTS TAIL

INTO RING) POINTER)

CLS RECEIVES
THE DATA (IN
RESPONSE TO
THE PULL_ID)

READ SRAM AT 407

ADDRESS (TO
OBTAIN 64 BITS)

MERGE PULL \-~408
DATA WITH DATA

READ FROM
SRAM

403 410

PUSH AN ERROR
MESSAGE BACK
TOMASTER

MESSAGE BACK WRITE MERGED Y~ 409

DATA INTO SRAM
TOMASTER AT THE ADDRESS

MASTER = ME
TARGET =CLS

“PUT INTO RING” FLOWCHART

FIG. 21

U.S. Patent May 17, 2016 Sheet 16 of 20 US 9,342,313 B2

RECEIVE TH
GET COMMAND

ONTO THE CLS }~ 901

RING OP STAGE
RETRIEVES HEAD AND 502
TAIL POINTERS AND }-~

DETERMINES IF THE
RING IS EMPTY

NOT EMPTY

RING OP STAGE
OBTAINS AN ADDRESS
STORED IN THE HEAD,
INCREMENTS HEAD
POINTER

EMPTY
504

READ SRAM AT

ADDRESS (DATA)}~ 905

PUSH AN ERROR
MESSAGE BACK
TOMASTER

PUSH DATA BACK
TO MASTER

506

MASTER = ME
TARGET =CLS

ERROR INDICATES THAT THE RING IS EMPTY

“‘GET FROM RING” FLOWCHART

FIG. 22

U.S. Patent May 17, 2016 Sheet 17 of 20 US 9,342,313 B2

‘/;(600
RETRIEVES HEAD "\~ 602
AND TAIL
POINTERS AND
DETERMINES |F
ING IS < % FUL <% EULL

604

RING OP STAGE
OBTAINS AN

CLS POSTS A
PULL-ID TO THE

MASTER ME ADDRESS STORED | _g05
OATATO BE BUT, (NCREMENTS TAL
POINTER)

INTO RING)

READ SRAM AT
ADDRESS (TO
OBTAIN 64 BITS)

CLS RECEIVES
THE DATA (ITN
RESPONSE TO
THE PULL-ID)

60 607

MERGE PULL

READ FROM
SRAM

WRITE MERGED
DATA INTO SRAM
AT THE ADDRESS

PUSH AN ERROR
MESSAGE BACK TO
MASTER

PUSH AN OK
MESSAGE BACK TO
MASTER

603 609

MASTER = ME
TARGET =CLS

PUT INTO RING WITH LOW PRIORITY FLOWCHART

FIG. 23

U.S. Patent May 17, 2016 Sheet 18 of 20 US 9,342,313 B2

RECEIVE THE GET FROM
RING X OR Y COMMAND
ONTO THE CLS FROM THE
MASTER ME (WHERE X IS
HIGHER PRIORITY RING
THAN'Y)

RING OP STAGE
RETRIEVES HEAD AND
TAIL POINTERS AND
DETERMINES IF EACH
OF THE RINGS 1S
EMPTY

702

703
RING X IS EMPTY

R O PESIE BUT RING Y IS NOT EMPTY

DETERMINES IF
RING XIS NOT EMPTY & pINGS X AND Y ARE
EMPTY

RING OP STAGE RING OP STAGE
USES THE RING X USES THE RING Y
705 HEAD POINTER TO HEAD POINTER TO 709
OBTAIN AN OBTAIN AN
ADDRESS STORED ADDRESS STORED
IN THE HEAD IN THE HEAD

RINGS X AND Y ARE
BOTH EMPTY

INCREMENT
HEAD POINTER
OF RING X

INCREMENT
HEAD POINTER
OF RINGY

706 710

READ SRAM AT
ADDRESS (TO
OBTAIN 64 BITS

READ SRAM AT
ADDRESS (TO
OBTAIN 64 BITS

707

PUSH AN ERROR
MESSAGE BACK
TO MASTER

PUSH DATA BACK

70 MASTER PUSH DATA BACK

708 TO MASTER

MASTER = ME
TARGET =CLS

“GET FROM ONE OF A SET OF RINGS” FLOWCHART

FIG. 24

U.S. Patent May 17, 2016 Sheet 19 of 20 US 9,342,313 B2

SSB
PERIPHERALS EB EB CcB
163
L o qTo !
, DECODER :
| 801 SEL_1 |
| iy | I
! » EVENT MANAGER |
| READ 2 > 170 i
| REQUEST B / !
: 800 /64 |
: _*9/ :
| 64 SEL_2 |
| %2 = >| TRUE RANDOM NUMBER | | 1
| - |
| DATABACK /574 > GENERATOR « 1
RN V2 > z m !
! 64 _ \« 64 !
| 64 3.1 OR Ty |
: -+ <

|
| GATES NFA ENGINE :
| i 172 I
: £ :
I 64 h |
|\ - - - - - ___ _ - - — — _ —_1

y
MEMORY UNIT
161

SSB PERIPHERALS BLOCK

FIG. 25

U.S. Patent

May 17, 2016 Sheet 20 of 20 US 9,342,313 B2
SMURLATENGES | — [IME12
FRO“R"M';/'A%FT{Q CLS = CIME11 | DIFFERENT LATENCIES
/ O FROM MEs TO SRAM
oL — LM MEMORY
I
CLS I *
805 L *
\ ® { \
SIMILAR LATENCIES Omes | |
FROM MEs TO CLS X g 804
MEMORY ME DIMELA™ ¢
N CLUSTER() 36 Ovet 1\
\ OMEr2 R AR
f
136 / CIME1 I 'l
i 803 [ENGS |
A SINGLE-) . i IMUT I
THREADED ~——~ CLS Iy . \ I
MEMORY ‘\H\ .] i
% CIvE3 : '4
) CIME2 ! 2
ME "] !
CLUSTER (7) 40 O ME1 ; |
————— rd '
P e - |
// !
/ |
II !
/ I
/ |
NBI (2) ! [
! '.
! \
! \
! 1
46 ‘\ {
1
! INTERNAL MU \
\ SRAM \
! {
! \
! \
ENGS : I
|
FOR , 52 |
IMU2 l |
!]
I
!
\
\ /I
\\ /
ﬂ \\ - //
___________ T___-"————"/

FIG. 26

AMULTI-THREADED TRANSACTIONAL MEMORY,
WITH A PIPELINE, AND ALSO WITH A STATE
MACHINE TO HANDLE MULTIPLE THREADS.

US 9,342,313 B2

1
TRANSACTIONAL MEMORY THAT
SUPPORTS A GET FROM ONE OF A SET OF
RINGS COMMAND

TECHNICAL FIELD

The described embodiments relate generally to network
processor integrated circuits employing transactional memo-
ries and to related methods.

BACKGROUND INFORMATION

A network processor is a device that executes programs to
handle packet traffic in a data network. A network processor
is also often referred to as a network flow processor or simply
a flow processor. Examples include network processor inte-
grated circuits on router line cards and in other network
equipment. In one example, a network processor integrated
circuit is capable of receiving packets, classifying and per-
forming operations on the packets and the associated packet
data, and transmitting packets. Various processors on the
integrated circuit are called upon to perform various types of
processing and analysis on the packets and associated packet
data as the packets flow through the network processor. As
throughput requirements increase, ways of improving such
network processor integrated circuits are sought.

SUMMARY

A transactional memory has a command/push/pull (CPP)
bus interface. The transactional memory includes a ring
buffer control circuit and a memory unit. A plurality of rings
of bufters is stored in the memory unit. Each ring has a head
buffer and a tail buffer. The used buffers of a ring are stored in
contiguous locations in the memory. In one example, the ring
control circuit is pipelined. The pipeline has a ring operation
stage, a read stage, a wait stage, a pull stage, an execute stage,
and a write stage. The ring operation stage may be referred to
as a “ring operation portion”. The read stage, wait stage, pull
stage, execute stage, and write stages may be referred to as a
“memory access portion”. The ring operation stage main-
tains, for each ring, a ring descriptor. A ring descriptor for a
ring includes a head pointer that points to the head buffer of
the ring, a tail pointer that points to the tail buffer of the ring,
abase address value that identifies the beginning of the buffer
space in the memory unit (where the block ofused and unused
buffers of the ring are stored), and a ring size value that
indicates the size of the ring (the size of the block of the used
and unused buffers of the ring). As values are put onto the
rings, and as values are removed from the rings, the ring
operation stage maintains the head and tail pointers so that the
head pointer for a ring continues to point to the head buffer of
the ring, and so that the tail pointer for a ring continues to
point to the tail buffer of the ring.

In a first novel aspect, an entity external to the transactional
memory (for example, a processor such as a microengine) can
supply a “put into ring” command via the bus interface to the
transactional memory. The ring operation stage of the pipe-
line of the transactional memory uses the head and tail point-
ers for the ring to determine if the ring identified by the “put
into ring” command is full. If the ring is full, then no addi-
tional buffer value is put into the ring, but rather an error
message is returned to the external entity via the bus interface.
If, on the other hand, the ring identified by the “put into ring”
command is not full, then the transactional memory puts a

10

25

30

40

45

2

supplied value (supplied by the external entity) into the tail
buffer of the ring and adjusts the tail pointer for the ring to
point to the new tail buffer.

Similarly, an entity external to the transactional memory
can supply a “get from ring” command via the bus interface to
the transactional memory. The ring operation stage uses the
head and tail pointers to determine if the ring identified by the
“get from ring” command is empty. If the ring is empty, then
no buffer value is taken off the ring, but rather an error
message is returned to the external entity. If, on the other
hand, the ring identified by the get from ring command is not
empty, then the transactional memory takes the value stored
in the head buffer off the ring, outputs the read value to the
external entity via the bus interface, and adjusts the head
pointer to point to the new head buffer.

In a second novel aspect, an entity external to the transac-
tional memory can supply a “put into ring with low priority”
command via the bus interface to the transactional memory.
The ring operation stage uses the head and tail pointers to
determine if the ring identified by the “put into ring with low
priority” command has at least a predetermined amount of
free buffer space (for example, the ring is less than half full).
If the ring is determined not to have the predetermined
amount of free buffer space, then no additional value is put
into the ring, but rather an error message is returned to the
external entity via the bus interface. If, on the other hand, the
ring identified by the “put into ring with low priority” com-
mand is determined to have the predetermined amount of free
buffer space, then the transactional memory puts a supplied
value (supplied by the external entity) into the tail buffer of
the ring and adjusts the tail pointer to point to the new tail
buffer.

In a third novel aspect, an entity external to the transac-
tional memory can supply a “get from one of a set of rings”
command via the bus interface to the transactional memory.
The command identifies a set of rings. The rings have a
defined priority order. The ring operation stage uses the head
and tail pointers for each ring of the set to determine if the ring
is empty. If all the rings of the set are empty, then no value is
taken off any ring, but rather an error message is returned to
the external entity via the bus interface. If, on the other hand,
at least one of the rings is not empty, then the head buffer of
the highest priority non-empty ring is read, the read value is
supplied back to the external entity via the bus interface, and
the head pointer for the ring that was accessed is updated to
point to the new head buffer of that ring.

In some examples, not only is an error message returned to
the external entity if a requested ring operation cannot be
performed, but also an okay message is returned to the exter-
nal entity if the required ring operation was successfully
performed. The okay message can contain additional infor-
mation. In one example, the okay message indicates which
ring was accessed, and indicate how much buffer space is
available in the accessed ring. In addition to ring commands,
the pipeline stages other than the ring operation stage are
usable to carry out other transactional memory commands.
One transactional memory command is a read of a specified
memory location in the memory unit. Another transactional
memory command is a write to a specified memory location
in the memory unit.

Further details and embodiments and techniques are
described in the detailed description below. This summary
does not purport to define the invention. The invention is
defined by the claims.

US 9,342,313 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like numerals indicate
like components, illustrate embodiments of the invention.

FIG. 1 is a top-down diagram of an [sland-Based Network
Flow Processor (IB-NFP) integrated circuit 1 and associated
memory circuits 2-7 in an MPLS router application.

FIG. 2 is a flowchart of a write operation that can be
performed across a CPP data bus of the IB-NFP integrated
circuit of FIG. 1.

FIG. 3 is a flowchart of a read operation that can be per-
formed across a CPP data bus of the IB-NFP integrated circuit
of FIG. 1.

FIG. 4 is diagram of a bus transaction value communicated
across the CPP data bus.

FIG. 5 is atablelisting the parts of the command payload of
the bus transaction value of FIG. 3, when the bus transaction
value is a command sent across the command mesh of the
CPP data bus.

FIG. 6 is a table listing the width and description of each
field within the payload of a bus transaction value sent across
the pull-id mesh of the CPP data bus.

FIG. 7 is a table listing the width and description of each
field within the payload of a bus transaction value sent across
the data0 or datal mesh of the CPP data bus.

FIG. 8 is a table listing the width and description of each
field within the data payload of a pull transaction.

FIG. 9 is a table listing the width and description of each
field within the data payload of a push transaction.

FIG. 10 is a diagram that shows how a pair of microengines
(MEs) communicates using a ring of buffers.

FIG. 11 is a simplified diagram of a microengine island
(ME island) of the IB-NFP integrated circuit of FIG. 1.

FIG.12is asimplified diagram of the Cluster L.ocal Scratch
(CLS) within the ME island of FIG. 11.

FIG. 13 is a diagram of a ring of buffers stored in the CLS
of the ME island of FIG. 11.

FIG. 14 is a simplified diagram of a set of ring descriptors
associated with rings of bufters stored in the CLS of the ME
island of FIG. 11.

FIG. 15 is a flowchart of a method carried out by the
microengines (MEs) illustrated in FIG. 10.

FIG. 16 is a diagram that shows operations carried out by
the ring operation stage in carrying out a “put into ring”
command.

FIG. 17 is a diagram that shows operations carried out by
the ring operation stage in carrying out a “get from ring”
command.

FIG. 18 is a diagram that illustrates operation of the CLS of
FIG. 12 in the case of a “put into ring” command.

FIG. 19 is a diagram that illustrates operation of the CLS of
FIG. 12 in the case of a “get from ring” command.

FIG. 20 is a diagram that illustrates operation of the CLS of
FIG. 12 in the case of a write to memory command.

FIG. 21 is a flowchart of operations carried out when the
CLS of FIG. 12 performs a “put into ring” command.

FIG. 22 is a flowchart of operations carried out when the
CLS of FIG. 12 performs a “get from ring” command.

FIG. 23 is a flowchart of operations carried out when the
CLS of FIG. 12 performs a “put into ring with low priority”
command.

FIG. 24 is a flowchart of operations carried out when the
CLS of FIG. 12 performs a “get from a set of rings” com-
mand.

FIG. 25 is a block diagram of the SSB peripheral block of
the CLS of FIG. 12.

10

20

30

40

45

55

65

4

FIG. 26 is a diagram that shows another novel aspect
involving a single-threaded transactional memory (the CLS
of FIG. 12) and a multi-threaded transactional memory (the
transactional memory of the MU island).

DETAILED DESCRIPTION

Reference will now be made in detail to background
examples and some embodiments of the invention, examples
of which are illustrated in the accompanying drawings.

FIG. 1 is a top-down diagram of an Island-Based Network
Flow Processor (IB-NFP) integrated circuit 1 and associated
memory circuits 2-7. The IB-NFP integrated circuit sees use
in network appliances such as, for example, an MPLS router.
IB-NFP integrated circuit 1 includes many 1/O (input/output)
terminals (not shown). Each of these terminals couples to an
associated terminal of the integrated circuit package (not
shown) that houses the IB-NFP integrated circuit. The inte-
grated circuit terminals may be flip-chip microbumps and are
not illustrated. Alternatively, the integrated circuit terminals
may be wire bond pads. The IB-NFP integrated circuit 1 is
typically disposed on a line card along with optics transceiver
circuitry, PHY circuitry and external memories.

SerDes circuits 9-12 are the first set of four SerDes circuits
that are used to communicate with external networks via the
PHY circuitry, the optics transceivers, and optical cables.
SerDes circuits 13-16 are the second set of four SerDes cir-
cuits that are used to communicate with a switch fabric (not
shown) of the MPLS router. Each of these SerDes circuits
13-16 is duplex in that it has a SerDes connection for receiv-
ing information and it also has a SerDes connection for trans-
mitting information. Each of these SerDes circuits can com-
municate packet data in both directions simultaneously at a
sustained rate of 25 Gbps. IB-NFP integrated circuit 1
accesses external memory integrated circuits 2-7 via corre-
sponding 32-bit DDR physical interfaces 17-22, respectively.
IB-NFP integrated circuit 1 also has several general purpose
input/output (GPIO) interfaces. One of these GPI1O interfaces
23 is used to access external PROM 8.

In addition to the area of the input/output circuits outlined
above, the IB-NFP integrated circuit 1 also includes two
additional areas. The first additional area is a tiling area of
islands 24-48. Each of the islands is either of a full rectangular
shape, or is half the size of the full rectangular shape. For
example, the island 29 labeled “PCIE (1) is a full island. The
island 34 below it labeled “ME CLUSTER (5)” is a half
island. The functional circuits in the various islands of the
tiling area are interconnected by: 1) a configurable mesh
Command/Push/Pull (CPP) data bus, 2) a configurable mesh
control bus, and 3) a configurable mesh event bus. Each such
mesh bus extends over the two-dimensional space of islands
with a regular grid or “mesh” pattern.

In addition to this tiling area of islands 24-48, there is a
second additional area of larger sized blocks 49-53. The func-
tional circuitry of each of these blocks is not laid out to consist
of islands and half-islands in the way that the circuitry of
islands 24-48 is laid out. The mesh bus structures do not
extend into or over any of these larger blocks. The mesh bus
structures do not extend outside of island 24-48. The func-
tional circuitry of a larger sized block may connect by direct
dedicated connections to an interface island and through the
interface island achieve connectivity to the mesh buses and
other islands.

The arrows in FIG. 1 illustrate an operational example of
IB-NFP integrated circuit 1 within the MPLS router. 100
Gbps packet traffic is received onto the router via an optical
cable (not shown), flows onto the line card and through an

US 9,342,313 B2

5

optics transceiver (not shown), flows through a PHY inte-
grated circuit (not shown), and is received onto IB-NFP inte-
grated circuit 1, is spread across the four SerDes I/O blocks
9-12. Twelve virtual input ports are provided at this interface.
The symbols pass through direct dedicated conductors from
the SerDes blocks 9-12 to ingress MAC island 45. Ingress
MAC island 45 converts successive symbols delivered by the
physical coding layer into packets by mapping symbols to
octets, by performing packet framing, and then by buffering
the resulting packets for subsequent communication to other
processing circuitry. The packets are communicated from
MAC island 45 across a private inter-island bus to first NBI
(Network Bus Interface) island 46. In addition to the optical
cable that supplies packet traffic into the line card, there is
another optical cable that communicates packet traffic in the
other direction out of the line card.

For each packet received onto the IB-BPF in the example of
FIG. 1, the functional circuitry of first NBI island 46 (also
called the ingress NBI island) examines fields in the header
portion of the packet to determine what storage strategy to use
to place the packet into memory. In one example, first NBI
island 46 examines the header portion and from that deter-
mines whether the packet is an exception packet or whether
the packet is a fast-path packet. One type of exception packet
is an ARP response packet. If the packet is an exception
packet then the first NBI island 46 determines a first storage
strategy to be used to store the packet so that relatively
involved exception processing can be performed efficiently,
whereas if the packet is a fast-path packet then the NBI island
46 determines a second storage strategy to be used to store the
packet for more efficient transmission of the packet from the
IB-NFP. First NBI island 46 examines a packet header, per-
forms packet preclassification, determines that the packet is a
fast-path packet, and determines that the header portion of the
packet should be placed into a CTM (Cluster Target Memory)
in ME (Microengine) island 40. The header portion of the
packet is therefore communicated across the configurable
mesh data bus from NBI island 46 to ME island 40. The CTM
is tightly coupled to microengines in the ME island 40. The
ME island 40 determines header modification and queuing
strategy for the packet based on the packet flow (derived from
packet header and contents) and the ME island 40 informs a
second NBI island 37 (also called the egress NBI island) of
these. The payload portions of fast-path packets are placed
into internal SRAM (Static Random Access Memory) MU
block 52 and the payload portions of exception packets are
placed into external DRAM 6 and 7.

Half island 42 is an interface island through which all
information passing into, and out of, SRAM MU block 52
passes. The functional circuitry within halfisland 42 serves as
the interface and control circuitry for the SRAM within block
52. For simplicity purposes in the discussion below, both half
island 42 and MU block 52 may be referred to together as the
MU island, although it is to be understood that MU block 52
is actually not an island as the term is used here but rather is
ablock. The payload portion of the incoming fast-path packet
is communicated from NBI island 46, across the configurable
mesh data bus to SRAM control island 42, and from control
island 42, to the interface circuitry in block 52, and to the
internal SRAM circuitry of block 52. The internal SRAM of
block 52 stores the payloads so that they can be accessed for
flow determination by the ME island.

In addition, a preclassifier in the first NBI island 46 deter-
mines that the payload portions for others of the packets
should be stored in external DRAM 6 and 7. For example, the
payload portions for exception packets are stored in external
DRAM 6 and 7. Interface island 44, external MU SRAM

30

40

45

55

6

block 53, and DDR PHY I/O blocks 21 and 22 serve as the
interface and control for external DRAM integrated circuits 6
and 7. The payload portions of the exception packets are
therefore communicated across the configurable mesh data
bus from first NBI island 46, to interface and control island
44, to external MU SRAM block 53, to 32-bit DDR PHY I/O
blocks 21 and 22, and to external DRAM integrated circuits 6
and 7. At this point in the operational example, the packet
header portions and their associated payload portions are
stored in different places. The header portions of both fast-
path and exception packets are stored in the CTM (Cluster
Target Memory) in ME island 40. The payload portions of
fast-path packets are stored in internal SRAM in MU block
52, whereas the payload portions of exception packets are
stored in external SRAM in external DRAMs 6 and 7.

ME island 40 informs second NBI island 37 (the egress
NBIlisland) where the packet headers and the packet payloads
can be found and provides the second NBI island 37 with an
egress packet descriptor for each packet. The egress packet
descriptor indicates a queuing strategy to be used for the
associated packet. Second NBI island 37 uses the egress
packet descriptors to read the packet headers and any header
modification from ME island 40 and to read the packet pay-
loads from either internal SRAM 52 or external DRAMs 6
and 7. Second NBI island 37 places packet descriptors for
packets to be output into the correct order. For each packet
that is then scheduled to be transmitted, the second NBI island
37 uses the packet descriptor to read the header portion and
any header modification and the payload portion and to
assemble the packet to be transmitted. The header modifica-
tion is not actually part of the egress packet descriptor, but
rather it is stored with the packet header by the ME when the
packetis presented to the NBI. The second NBl island 37 then
performs any indicated packet modification on the packet.
The resulting modified packet then passes from second NBI
island 37 and to egress MAC island 38.

Egress MAC island 38 buffers the packets, and converts
them into symbols. The symbols are then delivered by con-
ductors from the MAC island 38 to the four SerDes I/O blocks
13-16. From SerDes I/O blocks 13-16, the 100 Gbps outgoing
packet flow passes out of the IB-NFP integrated circuit 1 and
to the switch fabric (not shown) of the router. Twelve virtual
output ports are provided in the example of FIG. 1.

General Description of the CPP Data Bus: A Command-
Push-Pull (CPP) data bus structure interconnects functional
circuitry in the islands of the IB-NFP integrated circuit 1.
Within each full island, the CPP data bus actually includes
four mesh bus structures, each of which includes a crossbar
switch that is disposed in the center of the island, and each of
which includes six half links that extend to port locations at
the edges of the island, and each of which also includes two
links that extend between the crossbar switch and the func-
tional circuitry of the island. These four mesh bus structures
are referred to as the command mesh bus, the pull-id mesh
bus, and data0 mesh bus, and the datal mesh bus. The mesh
buses terminate at the edges of the full island such that if
another identical full island were laid out to be adjacent, then
the half links of the corresponding mesh buses of the two
islands would align and couple to one another in an end-to-
end collinear fashion. For additional information on the IB-
NFP integrated circuit, the IB-NFP’s islands, the CPP data
bus, the CPP meshes, operation of the CPP data bus, and the
different types of bus transactions that occur over the CPP
data bus, see: U.S. patent application Ser. No. 13/399.433
entitled “Staggered Island Structure in an Island-Based Net-
work Flow Processor” filed on Feb. 17, 2012 (the entire
subject matter of which is incorporated herein by reference).

US 9,342,313 B2

7

General Description of a Write That Results in a Pull: In
one example of a CPP bus transaction, a master on one island
can use a data bus interface (on the master’s island) to perform
a write operation over the CPP bus to a target on another
island, where the target is made to respond by performing a
pull operation. FIG. 2 is a flowchart of such a write operation
100. First, the master uses its data bus interface to output a bus
transaction value onto the command mesh (step 101) of the
CPP data bus. The format of the bus transaction value is as set
forth in FIG. 4. A bus transaction value 54 includes a metadata
portion 55 and a payload portion 56 as shown. The metadata
portion 55 includes a final destination value 57 and a valid bit
58. The bus transaction value is a write command and is said
to be “posted” by the master onto the command mesh. The
metadata portion includes the 6-bit final destination value.
This final destination value identifies an island by number,
where the island identified is the final destination of the bus
transaction value. The final destination value is used by the
various crossbar switches of the command mesh structure to
route the bus transaction value (i.e., the command) from the
master to the appropriate target. All bus transaction values on
the command mesh that originate from the same island that
have the same final destination value will traverse through the
configurable command mesh along the same one path all the
way to the indicated final destination island.

A final destination island may include more than one
potential target. As indicated in FIG. 5, the 4-bit target field of
payload portion indicates which one of these targets in the
destination island it is that is the target of the command. The
5-bit action field of the payload portion indicates that the
command is a write. The 14-bit data reference field is a
reference usable by the master to determine where in the
master the data is to be found. The address field indicates an
address in the target where the data is to be written. The length
field indicates the amount of data.

The target receives (step 102 of FIG. 2) the write command
from the command mesh and examines the payload portion of
the write command. From the action field, the target deter-
mines that it is to perform a write action. To carry out this
write action, the target posts a bus transaction value called a
pull-id (step 103 of FIG. 2) onto the pull-id mesh. FIG. 4
shows the format of the overall bus transaction value, and
FIG. 6 shows the format of the pull-id payload. The final
destination field of the metadata portion indicates the island
where the master is located. The target port field identifies
which sub-circuit target it is within the target’s island that is
the target of the command. The pull-id is communicated
through the pull-id mesh from the target back to the master.

The master receives the pull-id from the pull-id mesh and
uses the content of the data reference field of the pull-id to find
the data (step 104 of FIG. 2). In the overall write operation,
the master knows the data it is trying to write into the target.
The data reference value that is returned with the pull-id is
used by the master as a flag to match the returning pull-id with
the write operation that the target had previously initiated.
The master responds by sending the identified data to the
target across one of the data meshes data0 or datal as a “pull”
data bus transaction value. The term “pull” means that the
data of the operation passes from the master to the target. The
term “push” means that the data of the operation passes from
the target to the master. The format of the “pull” data bus
transaction value sent in this sending of data is also as indi-
cated in FIG. 4, whereas the format of the payload portion in
the case of the payload being pull data is as set forth in FIG.
8. In the example being described of a pull, the first bit of the
payload portion is asserted. This bit being a digital high
indicates that the transaction is a data pull as opposed to a data

25

30

35

40

45

8

push. The target then receives the data pull bus transaction
value across the datal or data0 mesh. The data received by the
target as the data for the write is the content of the data field of
the pull data payload portion. The target writes the received
data into memory (step 105 of FIG. 2)

General Description of a Read That Results in a Push: In
another example, a master can use the data bus interface (on
the master’s island) to perform a read operation over the CPP
bus from a target on another island, where the target is made
to respond by performing a push operation. FIG. 3 is a flow-
chart of such a read operation 110. First, the master uses the
data bus interface to “post” (step 111 of FIG. 3) a bus trans-
action value onto the command mesh bus of the configurable
mesh CPP data bus. In this case, the bus transaction value is a
read command to read data from the target. The format of the
read command is as set forth in FIGS. 4 and 5. The read
command includes a metadata portion and a payload portion.
The metadata portion includes the 6-bit final destination value
that indicates the island where the target is located. The action
field of the payload portion of the read command indicates
that the command is a read. The 14-bit data reference field is
usable by the master as a flag to associate returned data with
the original read operation the master previously initiated.
The address field in the payload portion indicates an address
in the target where the data is to be obtained. The length field
indicates the amount of data.

The target receives (step 112 of FIG. 3) the read command
and examines the payload portion of the command. From the
action field of the command payload portion the target deter-
mines that it is to perform a read action. To carry out this read
action, the target uses the address field and the length field to
obtain the data requested. The target then pushes the obtained
data (step 113 of FIG. 3) back to the master across data mesh
datal or data0. To push the data, the target outputs a push bus
transaction value onto the datal or data0 mesh. FIG. 4 sets
forth the format of the overall push bus transaction value,
whereas FIG. 9 sets forth the format of the payload portion of
this push bus transaction value. The first bit of the payload
portion indicates that the bus transaction value is for a data
push, as opposed to a data pull. The master receives the bus
transaction value of the data push from the data mesh bus. The
master then uses the data reference field of the push bus
transaction value to associate the incoming data with the
original read command, and from the original read command
determines where the pushed data (data in the data field of the
push bus transaction value) should be written into the master.
The master then writes (step 114 of FIG. 3) the content of the
data field into the master’s memory at the appropriate loca-
tion.

FIG. 10 is a diagram that illustrates the flow of packet
information from the first NBl island 37 to the ME island 40.
The flow of packet information includes the first bytes of a
fast path packet (that includes the header portion of the
packet) and an ingress packet descriptor for the fast path
packet 120. This information 120 is received by an ME 124 of
ME island 40. ME 124 (referred to here as the RX ME)
determines that the associated packet is a fast path packet, so
the packet descriptor is forwarded on to the second NBl island
37 (the egress NBl island). The payload of the fast path packet
is stored in internal SRAM in MU block 52 as described
above. The second NBI island 37 uses the packet descriptor
120 to access and to perform output processing on the fast
path packet.

The flow of packet information also includes the first bytes
(the header portion of the packet) of an exception packet and
an ingress packet descriptor for the exception packet 121. In
this case, the exception packet is an ARP response packet.

US 9,342,313 B2

9

This information 121 is received by the RX ME 124 of ME
island 40. The RX ME determines that the associated packet
is an exception packet and that further exception processing
should be performed by another ME on the island. The other
ME 134 is referred to here as the ARP response ME. RX ME
124 puts a pointer 122 (to where the header of the exception
packet is stored in CTM 138) into a ring 146 of buffers. This
ring 146 is stored on the same island as the RX ME and as the
ARP response ME. The ARP response ME 134 then gets the
pointer 122 from the ring 146 and uses the pointer 122 to
retrieve the header of the ARP response packet from CTM
138 where it is stored. From the header of the ARP response
packet, the ARP response ME 134 learns the ethernet source
address that is associated with the IP source address of the
sender of the ARP response packet. The ARP response ME as
amaster then posts a write command to the CLS as a target, to
writes the ethernet source address into an IP-to-Ethernet table
160 in memory unit 161 of the CLS in the ME island 40. As a
result, the table indicates the ethernet source address that
corresponds to the IP source address.

FIG. 11 is a more detailed diagram of ME island 40. In
addition to other parts, the ME island 40 includes six pairs of
microengines 123-134, a data bus island bridge 135, the Clus-
ter Local Scratch (CLS) 136, a data bus interface 137 for the
CLS, the Cluster Target Memory (CTM) 138, and a data bus
interface 139 for the CTM. Each pair of microengines shares
amemory containing program code for the microengines. For
example, memory 140 is the memory shared by the first two
microengines 123 and 124. In the operational flow of FIG. 1,
packet headers and the associated preclassification results are
DMA transferred from the first NBI island 46 across the
configurable mesh data bus and into Cluster Target Memory
(CTM) 138. A DMA engine in the first NBI island 46 is the
master and CTM 138 in ME island 40 is the target for this
transfer. The packet header portions and the associated
ingress packet descriptors pass into the ME island 40 via data
bus island bridge 135 and data bus interface circuitry 139.
Once in the CTM 138, the header portions are analyzed by the
RX ME 124. CLS 136 is a transactional memory that
includes, among other parts, sixteen rings 144-159 of buffers.
RX ME 124 puts a pointer to the header portion 141 of the
ARP response packet into ring 3 by supplying a “put into
ring” command to the CLS 136 via DB island bridge 135.
Arrow 142 indicates this supplying of this “put into ring”
command through the DB island bridge to the CLS. The ARP
response ME 134 then supplies a “get from ring” command to
the CLS 136 to get the pointer from ring 3. The ARP response
ME 134 as a master supplies the “get from ring” command to
the CLS 136 as a target via DB island bridge 135. Arrow 143
indicates this supplying of the “get from ring” command
through DB island bridge 135 to the CLS 136. Ring 3 is
therefore used as a communication mechanism between RX
ME 124 and ARP response ME 134.

FIG. 12 is a diagram that shows CLS 136 in further detail.
CLS 136 includes a memory unit 161, a control circuit 162 (a
control pipeline), a SSB peripherals block 163, and FIFOs
164-167. The memory unit 161 in this case is two-ported
SRAM that has a first port 168 and a second port 169. The
memory unit 161 stores, among other things, the sixteen rings
144-159 of buffers as well as the IP-to-Ethernet table 160.
SSB peripherals block 163 includes an event manager 170, a
random number generator 171, and a Non-deterministic
Finite state Automaton (NFA) engine 172. Control circuit 162
in this case is a pipeline that includes a ring operation stage
173, a read stage 174, a wait stage 175, a pull stage 176, an
execute stage 177 and a write stage 178. The ring operation
stage 173 maintains and stores sixteen ring descriptors 179-

10

15

20

25

30

35

40

45

50

55

60

65

10

194. There is one ring descriptor for each ring in memory unit
161, where the ring descriptor includes a base address value,
atail pointer, a head pointer, and a ring size value. In addition,
the pipeline 162 is also considered to include a decoder 195,
an operation FIFO 196, and a translator 197.

General operation of the CLS 136 involves a flow of com-
mands that are sent by a master to the CLS as a target via the
DB island bridge 135 and the data bus interface 137. A master
(for example RX ME 124 or APR response ME 134) in the
same ME island can supply a command to the local CLS as a
target using the same CPP data bus commands and operations
as described above just as if the CLS were outside the island
in another island, except that bus transaction values do not
have a final destination value. The bus transaction values do
not leave the island and therefore do not need that final des-
tination information. The data bus interface 137 is the target
of'the bus transaction. The resulting flow of commands to the
CLS is pushed into FIFO 164. One at a time, the commands
are presented to the pipeline 162 via conductors 198. For a
command passing into the pipeline, the decoder 195 deter-
mines if the operation specified by the command will require
data to be obtained (i.e., pulled) in order for the operation to
be carried out. If the result of the decoding indicates that data
should be pulled, then information to generate a pull-id bus
transaction value is generated by the decoder 195 and is sent
across conductors 199 and into FIFO 165. The data bus inter-
face 137 uses this information from FIFO 165 to generate an
appropriate pull-id transaction value. The pull-id transaction
value is communicated via DB island bridge 135 to the master
(for example, the RX ME or the ARP response ME). The
master in turn returns the pull data via DB island bridge 135
and the data bus interface 137 target. The pull data pass
through pull FIFO 166 and conductors 200 back to the pipe-
line. It generally takes multiple clock cycles for the pull data
to be returned.

Meanwhile, after decoding by decoder 195, the command
201 passes through operation FIFO 196 and is translated into
aset of opcodes 202 by translator 197. There is one opcode for
each stage of the pipeline. Each opcode determines what a
corresponding pipeline stage will do during the clock cycle
when the command is being processed by that stage. For
example, if the command is a ring command, then the ring
operation stage consults information in the ring descriptors
179-194. Based on this information, the ring operation stage
may, for example, output the address of the head buffer of a
ring, output the address of the tail buffer of a ring, determine
if a ring is empty, and/or determine if a ring is full. If the
command requires a value to be read from the peripherals
block 163 or from memory unit 161, then the read stage 173
outputs a read request via conductors 203. After a pull-id has
been posted to the DB island bridge 135 as described above,
it may take a substantial period of time for the requested pull
data to be returned via pull FIFO 166. The wait stage 175 is
controlled by one of the opcodes to slow the pipeline long
enough for the returned pull data be present on the input of the
pull stage 176 at the time when processing of the command is
being performed by the pull stage. Any data that is returned as
a result of a read request on conductors 203 is received via
conductors 204 on the input of the execute stage 177. The
execute stage 177 then generates an output value as a function
of information from the prior stages, pull data and/or data
read from the peripherals or the memory unit. If the command
requires an output value to be written to the memory unit, then
the write stage 178 causes an appropriate write to occur across
conductors 205. Likewise, if the command requires an output
value to be returned to the command master across the DB

US 9,342,313 B2

11

island bridge, then the write stage 178 causes an appropriate
bus transaction value to be supplied to the DB island bridge
135 via write FIFO 167.

The stages 173-178 are pipelined. In a first cycle of the
clock signal CLK, the ring operation stage performs its func-
tions required by the command, in a second cycle of the clock
signal CLK the read stage performs its function required by
the command, in a third cycle ofthe clock signal CLK the wait
stage performs its function required by the command, in a
fourth cycle of the clock signal CLK the pull stage performs
its function required by the command, in a fifth cycle of the
clock signal CLK the execute stage performs its function
required by the command, and in a sixth cycle of the clock
signal CLK the write stage performs its function required by
the command. A different command is output from the opera-
tion FIFO 196 each cycle of the clock signal, so one command
can be executed by the pipeline each cycle.

FIG.13 isa diagram ofthe third ring 146 (ring 3) of buffers.
The number of buffers in a ring is configurable. In one
example, each buffer is a number of contiguous 512 memory
locations in memory unit 161, where each memory location is
32 bits long. All the buffers of a ring are contiguous. The
contiguous buffers of a ring therefore are a block of memory
locations in memory unit 161. The tail pointer T 207 is a nine
bit offset value which when added to the five bit base address
206 is the fourteen bit address of the tail buffer 209. The head
pointer 208 is a nine bit offset which when added to the five bit
base address 206 is the fourteen bit address of the head buffer
210.

FIG. 14 is adiagram of the sixteen ring descriptors 179-194
stored in the ring operation stage 173 of the pipeline. The third
ring descriptor 181 corresponds to the ring 3 (the third ring) of
FIG. 13. The base address value 206 of ring descriptor 181
indicates the starting address in memory unit 161 where the
block of memory locations for ring 3 starts. The size value
211 stored in the ring descriptor 181 indicates the number of
thirty-two bit buffers occupied by the ring. There is one such
ring descriptor stored in ring operation stage 173 for each of
the sixteen rings. The ring operation stage 173 handles main-
taining the ring descriptors so that for each ring, the head
pointer continues to point to the head bufter of the ring, and so
that the tail pointer continues to point to the tail buffer of the
ring.

FIG. 15 is a flowchart of steps involves in the communica-
tion depicted in FIG. 10. In a first step (step 301) of the
method 300, the ingress NBI island 46 writes both the first
bytes of the ARP response packet (the header portion 141) as
well as the ingress packet descriptor 212 for the ARP response
packet (see FIG.11) into CTM 138. The RX ME 124 analyzes
the header portion and the ingress packet descriptor and deter-
mines that the packet is an exception packet that should be
handled by the ARP response ME 134. The RX ME 124
therefore supplies a “put into ring” command 213 (step 302)
to the CLS 136, where the ring indicated by command 213 is
ring 3. The “put into ring”” command 213 is a command to the
CLS to put a thirty-two bit value into the tail buffer of an
identified ring, if the ring is not already full, and to update the
head and tail pointers of the ring so that the head pointer
continues to point to the head buffer of the ring, and so that the
tail pointer continues to point to the tail buffer of the ring.
FIG. 16 is a diagram showing operations carried out by the
ring operation stage when the pipeline executes a “put into
ring” command. FIG. 18 is a diagram that shows the “put into
ring” command 213 passing into pipeline 162. The “put into
ring” command 213 passes through operation FIFO 196.
Translator 197 converts the “put into ring” command into a
set of opcodes 202. In a “put into ring” operation, there is data

10

15

20

25

30

35

40

45

50

55

60

65

12

to be pulled so a pull-id is generated and pull data is received
back into the pull stage 176. In the present example, the pull
data is a pointer to the ARP response packet 216. In response
to the opcode for the ring operation stage 173, the ring opera-
tion stage identifies (step 303) a free buffer at the tail of ring
3. The ring operation stage does this in one cycle of the signal
CLK 214 by comparing the head pointer H 208 of ring 3 and
the tail pointer T 207 of ring 3. The ring operation stage
increments the sum of the tail pointer and the base address to
find the address of the next available buffer, and outputs this
address (the address in memory unit 161). The tail pointer 207
updated to reflect that the number of used buffers in ring 3 has
now increased.

Memory unit 161 is actually organized as sixty-four bit
words, so a word to be read from memory unit 161 is longer
than an individual thirty-two bit buffer of the ring. A single
memory location therefore stores more than just one buffer,
and if an individual buffer is to be written then the prior value
of the larger sixty-four bit memory location value must first
be read, and then the part of the larger value replaced with the
information to be written into the buffer, and then the entire
larger sixty-four bit value written back into the memory unit.
If the initial read were not done, then the prior contents of the
memory location other than the new buffer to be written
would be lost when the larger memory value is written back
into the memory unit.

In the present example, the read stage 174 uses the address
supplied by the ring operation stage to issue a read request
215 to read the sixty-four bit memory location in memory unit
161 that stores the tail buffer of ring 3. When the value 216 to
be written into the ring is returned from the master as pull data
via FIFO 166, the pull data 216 is supplied into pull stage 176.
The execute stage 177 receives the larger memory location
sixty-four bit value 217 read from memory unit 161 via con-
ductors 204, and replaces the portion of that sixty-four bit
value that is the tail buffer of ring 3 with the pull data 216
received via conductors 200. The write stage 178 then writes
(step 304) the modified larger sixty-four bit value 218 back
into memory unit 161. As a result, the value 216 that was
pulled from the master is said to have been “put” into the tail
of ring 3, and the tail pointer for ring 3 is incremented. In this
way the RX ME 124 puts pointers to ARP response packet
headers into ring 3.

The ARP response ME 134 supplies a “get from ring”
command 219 (step 305) to the CL.S 136 via DB island bridge
135, where the indicated ring of the command is ring 3. FIG.
17 is a diagram showing the operations carried out when the
pipeline executes a “get from ring” command. FIG. 19 is a
diagram that shows the “get from ring” command 219 passing
into pipeline 162. The command is converted into a set of
opcodes 220 by translator 197. The ring operation stage 173
uses the head and tail pointers for ring 3 to determine if ring
3 is empty. I[f ring 3 is not empty, then the ring operation stage
outputs an address of the head buffer of ring 3 (step 306), and
updates the head pointer to reflect that the prior head buffer of
the ring will thereafter be unused. The read stage 174 uses the
address to generate a read request 221 to read the head buffer
of'ring 3, and this read request 221 is supplied to memory unit
161. In a “get from ring” operation, there is no data to be
pulled so no pull-id is generated and no pull data is received
back into the pull stage 176. The contents 222 of the head
buffer of ring 3 is returned from memory unit 161 into the
execute stage 177, and the write stage 178 outputs the con-
tents 222 of the buffer to the master (step 307) via conductors
223 and FIFO 167. In the present example, RX ME 124
causes a pointer to be put into ring 3, where the pointer
indicates where the header portion of the ARP response

US 9,342,313 B2

13
packet is stored in CTM 138. The ARP response ME 134 then
causes the pointer to be retrieved from ring 3 by issuing the
“get from ring” command 219 to the transactional memory.
Accordingly, the ARP response ME uses the pointer (step
308) to read the header portion of the ARP response packet
from CTM 138. For this transaction, the ARP response ME
134 is the master and the CTM 138 is the target, even though
both master and target are on the same island. From the header
portion of the ARP response packet, the ARP response ME
134 learns (step 309) the ethernet source address that is asso-
ciated with the IP source address of the sender of the ARP
response packet. The ARP response ME 134 then issues a
“write into memory” command 224 (step 310) to the CLS to
write the ethernet source address into the IP-to-Ethernet table
160 in memory unit 161. For this transaction, the ARP
response ME 134 is the master and the CLS 162 is the target,
but both master and target are on the same island. As a result,
after the method of FIG. 15 has been completed, there is an
entry in the IP-to-Ethernet table 160 that indicates the ether-
net source address of the sender of the ARP response packet.

FIG. 20 is a diagram that illustrates how the “write into
memory” command 224 causes an entry in the [P-to-Ethernet
table 160 to be updated. A pull-id 225 is sent back to the
master, and the ethernet address data 226 to be added to the
table 160 is supplied by the master to the pipeline pull stage
176 by a pull operation. A read request 229 is issued to read
the larger memory location where the corresponding table
entry is stored. The larger overall value 227 is received, and
only that part of the read value 227 is then overwritten with
the ethernet address data 226, and then the overall revised
memory location value 228 is written back into memory unit
161. As aresult, the [P-to-Ethernet table 160 contains an entry
for the IP source address that lists the corresponding ethernet
source address.

FIG. 21 is a diagram that illustrates a method 400 that is
carried out when a “put into ring” command is executed. The
“put into ring” command is received (step 401) onto the CLS
from the master ME. In response to receiving the “put into
ring” command, the pull-id is sent (step 404) to the master
ME. The ring operation stage of the pipeline uses the head
pointer and the tail pointer of the ring descriptor for the ring
identified by the command to determine (step 402) if the
identified ring is full. If the ring is full, then the stages 174-
177 of the pipeline perform no operations, and the write stage
178 outputs an error result message (step 403). The error
message is pushed back (step 403) to the master ME via FIFO
167, data bus interface 137 and the data bus island bridge 135.
The master ME uses the pull-id to send (step 405) the pull data
to the CLS. The pull data is the data to be “put” into the ring.
The ring operation stage uses the base address value and the
tail pointer to determine (step 406) the address of the tail
buffer. The ring operation stage also updates the tail pointer to
reflect that the tail buffer is now the next buffer in the ring. The
read stage uses the address from the ring operation stage to
issue a read request (step 407) to the memory unit. The
returned value (thirty-two bits) is merged (step 408) with the
pull data (the value to be written into the tail buffer) so that the
pull data overwrites the content of the tail buffer. The write
stage then writes (step 409) the resulting merged data (sixty-
four bits) back into the memory unit. The write stage also
outputs an okay message (step 410) that is communicated
back to the master ME via FIFO 167, data bus interface 137,
and data bus island bridge 135.

FIG. 22 is a diagram that illustrates a method 500 that is
carried out when a “get from ring” command is executed. The
“get from ring” command is received (step 501) onto the CLS
from the master ME. The ring operation stage of the pipeline

10

15

20

25

30

35

40

45

50

55

60

65

14

uses the head pointer and the tail pointer of the ring descriptor
for the ring identified by the command to determine (step 502)
if the identified ring is empty. If the ring is empty, then the
stages 174-177 of the pipeline perform no operations, and the
write stage 178 outputs an error result message (step 503).
The error message is pushed back (step 503) to the master ME
via FIFO 167, data bus interface 137 and the data bus island
bridge 135. The ring operation stage also uses the base
address value and the head pointer to determine the address of
the head buffer. If the ring is determined to be not empty (step
502), then the ring operation stage outputs this address (step
504) to the read stage and increments the head pointer to
reflect the fact that the head buffer will now be a different
buffer. The read stage uses the address to issue a read request
(step 505) to the memory unit to read the head buffer of the
ring. The memory unit uses the address to read the head
buffer, and returns the data to the execution stage. The write
stage then pushes (step 506) the data back to the master via
FIFO 167, data bus interface 137 and the data bus island
bridge 135.

FIG. 23 is a diagram that illustrates a method 600 that is
carried out when a “put into ring with low priority” command
is executed. The “put into ring with low priority” command is
received (step 601) onto the CLS from the master ME. In
response to receiving the “put into ring with low priority”
command, the CLS posts a pull-id (step 604) to the master
ME to retrieve the data to be put into the ring. The ring
operation stage of the pipeline uses the head pointer and the
tail pointer of the ring descriptor for the ring identified by the
command to determine (step 602) if the identified ring is less
than half full. If the ring is determined (step 602) not to be less
than half full, then the stages 174-177 of the pipeline perform
no operations, and the write stage 178 outputs an error result
message (step 603). The error message is pushed back to the
master ME via FIFO 167, data bus interface 137 and the data
bus island bridge 135. The master ME returns the data back
(step 605) to the pull stage of the CLS. The ring operation
stage uses the tail pointer and the base address to determine
(step 606) the address of the tail pointer in the memory unit.
The ring operation stage also updates the tail pointer to reflect
the fact that the tail buffer will now be a different buffer. The
read stage uses the address determined by the ring operation
stage to issue a read request (step 607) to the memory unit to
read the memory location that stores the tail buffer. The
memory unit returns the data to the execute stage, and the
execute stage merges (step 608) the data read with the pull
data to generate merged data. The write stage writes the
merged data (step 609) back into the memory unit at the
address of the tail buffer. The write stage also pushes an okay
message (step 610) back to the master ME.

FIG. 24 is a diagram that illustrates a method 700 that is
carried out when a “get from a set of rings” command is
executed. The “get from a set of rings” command is received
(step 701) onto the CLS from the master ME. In this specific
example, the command indicates that there are only two rings
in the set, so the command is referred to in FIG. 26 as a “get
fromring X orY” command. The ring operation stage uses the
head and tail pointers of each ring of the set to determine
whether the ring is empty (step 702). In the present example,
the ring operation stage determines whether ring X is empty,
and whether ring Y is empty. If the ring operation stage
determines (step 703) that both rings X and Y are empty, then
the stages 174-177 of the pipeline perform no operations, and
the write stage 178 outputs an error result message (step 704).
The error message is pushed back to the master ME via FIFO
167, data bus interface 137 and the data bus island bridge 135.
If ring X is not empty, then the ring operation stage uses the

US 9,342,313 B2

15

head pointer and the base address for ring X to determine
(step 705) the address of the head buffer in the memory unit.
The ring operation stage increments the head pointer for ring
X to reflect that there is now a new head buffer for ring X. The
read stage uses the address (step 707) to issue a read request
to read the head buffer from the memory unit. The memory
unit returns the data to the execute stage, and the write stage
pushes (step 708) the data (the data is the value read from the
head buffer of ring X) back to the master ME. If the ring
operation stage determines that ring X is empty but ring Y is
not empty, then the ring operation stage uses the base address
and the head pointer for ring Y to determine (step 709) the
address in the memory unit where the head buffer of ring Y is
stored. The ring operation stage also increments the head
pointer (step 710) for ring Y to reflect that there is now a new
head buffer for ring Y. The read stage uses the address to issue
a read request (step 711) to read the head buffer from the
memory unit. The memory unit returns the data to the execute
stage, and the write stage pushes (step 712) the data (the data
is the value read from the head buffer of ring Y) back to the
master ME.

FIG. 25 is a simplified diagram of the SSB peripherals
block 163 of CLS 136. Several bits of an incoming read
request 800 are decoded by decoder 801 to identify either the
event manager 170, or the true random number generator 171,
or the NFA engine 172. There are three select signals SEL._1,
SEL_2 and SEL_3, only one of which can be asserted. If one
of the blocks 170, 171 and 172 does not receive an asserted
select signal, then that block outputs sixty-four digital low bit
values on its sixty-four output lines back to OR structure 802.
The selected block, however, can output a sixty-four bit value
on its sixty-four output lines back to the OR structure 802.
The sixty-four bit value output by the selected block therefore
passes through the OR structure 802 and back to the execute
stage 177 in the form of read data. In a similar way, the
selected block can be made to outputs its sixty-four bit output
value to port 2 of the memory unit 161.

FIG. 26 is a diagram that illustrates another novel aspect.
Islands 42 and 52 together are a transactional memory, but
this memory is a multi-threaded transactional memory
because there are different latencies from the masters that
might be causing the memory to perform tasks to the memory
itself. For example, the access latency from ME1 of ME
island 40 through the CPP bus to the transactional memory of
islands 42 and 52 is longer than is the access latency from
MEI1 of ME island 36 to the transactional memory. Arrows
803 and 804 represent these difference access latencies. The
pipeline of the multi-threaded memory therefore has an asso-
ciated state machine that holds off sending commands
through the pipeline until the necessary data to be used by the
pipeline has been retrieved. The pipeline of the multi-
threaded transactional memory is therefore relatively com-
plex. In one novel aspect, the transactional memories 136 and
805 of the ME islands 40 and 36 are relatively simple single-
threaded transactional memories. Access latencies from the
microengines of an ME island to the CLS of the same ME
island are substantially the same.

Although certain specific embodiments are described
above for instructional purposes, the teachings of this patent
document have general applicability and are not limited to the
specific embodiments described above. Accordingly, various
modifications, adaptations, and combinations of various fea-
tures of the described embodiments can be practiced without
departing from the scope of the invention as set forth in the
claims.

15

20

40

45

50

55

16

What is claimed is:
1. A transactional memory, comprising:

a memory unit that stores a first ring and a second ring,
wherein the first ring includes a first tail buffer and a first
head buffer, and wherein the second ring includes a
second tail buffer and a second head buffer; and

a ring buffer control circuit that receives a get from one of
a set of rings command onto the transactional memory
from a bus, wherein the ring buffer control circuit does
not have an instruction counter that it uses to fetch
instructions from any memory, wherein the ring buffer
control circuit comprises:

amemory access portion coupled to read from and write
to the memory unit; and

a ring operation portion, wherein the ring operation por-
tion: 1) maintains a first head pointer so that the first
head pointer points to the first head buffer of the first
ring, maintains a first tail pointer so that the first tail
pointer points to the first tail buffer of the first ring,
maintains a second head pointer so that the second
head pointer points to the second head buffer of the
second ring, and maintains a second tail pointer so
that the second tail pointer points to the second tail
buffer of the second ring, 2) determines ifthe first ring
is empty, 3) determines if the second ring is empty, 4)
if the first ring is determined not be empty then the
ring operation portion supplies a first address to the
memory access portion such that the memory access
portion uses the first address to read a first value out of
the head buffer of the first ring, whereas if the first ring
is determined to be empty and the second ring is
determined not to be empty then the ring operation
portion supplies a second address to the memory
access portion such that the memory access portion
uses the second address to read a second value out of
the head buffer of the second ring.

2. The transactional memory of claim 1, wherein the ring
buffer control circuit is a pipeline, wherein the ring operation
portion is a stage of the pipeline, and wherein the memory
access portion comprises a plurality of other stages of the
pipeline.

3. The transactional memory of claim 2, wherein the pipe-
line is clocked by a clock signal, and wherein the ring opera-
tion portion processes a different command each cycle of the
clock signal.

4. The transactional memory of claim 1, wherein if both the
first and second rings are determined to be empty then neither
the first head buffer of the first ring nor the second head buffer
of the second ring is read and the memory access portion
outputs an error message that is communicated from the
transactional memory to the bus.

5. The transactional memory of claim 1, wherein the ring
operation portion uses the first head pointer and the first tail
pointer to determine if the first ring is empty, and wherein the
ring operation portion uses the second head pointer and the
second tail pointer to determine if the second ring is empty.

6. The transactional memory of claim 1, wherein the ring
operation portion includes a first and a second count of entries
value, wherein the ring operation portion compares the first
count of entries value with a first preset value to determine if
the first ring is empty, and wherein the ring operation portion
compares the second count of entries value with a second
preset value to determine if the second ring is empty.

US 9,342,313 B2

17

7. A method comprising:

(a) storing a first ring of buffers in a memory unit of a
transactional memory, wherein the first ring of buffers
includes a first head buffer and a first tail buffer;

(b) storing a second ring of buffers in the memory unit,
wherein the second ring of buffers includes a second
head buffer and a second tail buffer;

(c) maintaining a first head pointer so that the first head
pointer points to the first head buffer of the first ring,
maintaining a first tail pointer so that the first tail pointer
points to the first tail buffer of the first ring, maintaining
a second head pointer so that the second head pointer
points to the second head of the second ring, and main-
taining a second tail pointer so that the second tail
pointer points to the second tail of the second ring,
wherein the first head pointer, the first tail pointer, the
second head pointer and the second tail pointers are
stored in a first stage of a pipeline of the transactional
memory;

(d) receiving a get from one of a set of rings command from
a bus and onto the transactional memory;

(e) in the first stage of the pipeline determining if the first
ring is empty;

(f) inthe first stage of the pipeline determining if the second
ring is empty; and

(g) if the first ring is empty then using the first tail pointer
to read a first value from the first ring, whereas if the first
ring is empty and the second ring is not empty then using
the second tail pointer to read a second value from the
second ring, wherein the reading of (g) is performed by
a stage of the pipeline other than the first stage, wherein
no stage of the pipeline has an instruction counter, and
wherein no stage of the pipeline fetches, decodes and
executes instructions.

8. The method of claim 7, wherein the first stage of the
pipeline uses the first head pointer and the first tail pointer to
determine if the first ring is empty, and wherein the first stage
of the pipeline uses the second head pointer and the second
tail pointer to determine if the second ring is empty.

9. The method of claim 7, wherein the first stage of the
pipeline includes a first and a second count of entries value,
wherein the first stage of the pipeline compares the first count
of'entries value with a first preset value to determine if the first
ring is empty, and wherein the first stage of the pipeline
compares the second count of entries value with a second
preset value to determine if the second ring is empty.

10. The method of claim 7, wherein the pipeline is clocked
by a clock signal, and wherein the first stage processes a
different command each cycle of the clock signal.

11. The method of claim 7, wherein if a value is read from
either the first or the second rings as a result of carrying out the
get from one of a set of rings command then the value read is
output from the transactional memory and onto the bus.

12. The method of claim 7, further comprising:

(h) if both the first and second rings are empty then not
performing any read of either ring but rather outputting
an error message from the transactional memory onto
the bus, wherein the outputting of the error message is
performed by a stage of the pipeline other than the first
stage.

13. The method of claim 7, wherein the get from one of a set
of rings command identifies a set of rings, wherein the rings
of' the set have an ordered priority, and wherein execution of
the get from one of a set of rings command causes the trans-
actional memory to read a value from the highest priority one
of the rings that is not empty.

20

25

35

40

45

50

55

18

14. The method of claim 7, wherein there may be more than
two rings in the set.

15. The method of claim 7, wherein the first stage of the
pipeline also maintains a first base address value for the first
ring, and also maintains a second base address value for the
second ring.

16. A transactional memory, comprising:

amemory unit that stores a first ring of buffers and a second

ring of buffers, wherein the first ring of buffers includes
a first tail buffer and a first head buffer, and wherein the
second ring of bufters includes a second tail buffer and a
second head buffer; and

means for: 1) receiving a get from one of a set of rings

command onto the transactional memory from a bus, 2)
using a first head pointer and a first tail pointer to deter-
mine if the first ring is empty, 3) using a second head
pointer and a second tail pointer to determine if the
second ring if empty, 4) if the first ring is not empty then
reading a first value from the first ring, whereas if the
first ring is empty and the second ring is not empty then
reading a second value from the second ring, whereas if
both the first and second rings are empty then not reading
any value out of either the first ring or the second ring, 5)
maintaining the first head pointer so that the first head
pointer points to the first head buffer of the first ring,
maintaining the first tail pointer so that the first tail
pointer points to the first tail buffer of the first ring,
maintaining the second head pointer so that the second
head pointer points to the second head buffer of the
second ring, maintaining the second tail pointer so that
the second tail pointer points to the second tail buffer of
the second ring, wherein the means does not have an
instruction counter.

17. The transactional memory of claim 16, wherein the
means is also for: 6) if both the first and second rings are
empty then not performing any read of either ring but rather
outputting an error message onto the bus.

18. The transactional memory of claim 16, wherein the
means is a pipeline, wherein the pipeline includes a ring
operation stage, a read stage and a write stage, and wherein
the ring operation stage can be performing a task of a first
command at the same time that the read stage is performing a
task of a second command at the same time that the write
stage is performing a task of a third command.

19. The transactional memory of claim 18, wherein the
pipeline is clocked by a clock signal, and wherein the ring
operation stage processes a different command each cycle of
the clock signal.

20. The transactional memory of claim 16, wherein the get
from one of a set of rings command identifies a set of rings,
wherein the rings of the set have an ordered priority, and
wherein execution of the get from one of a set of rings com-
mand causes the transactional memory to read a value from
the highest priority one of the rings that is not empty.

21. The transactional memory of claim 16, wherein the
means is a pipeline, wherein the pipeline includes a ring
operation stage, a read stage and a write stage, and wherein
the ring operation stage stores for the first ring: the first head
pointer, the first tail pointer, and a first base address value, and
wherein the ring operation stage stores for the second ring: the
second head pointer, the second tail pointer, and a second base
address value.

22. The transactional memory of claim 16, wherein the
means is also for: 6) receiving a put into ring command.

US 9,342,313 B2
19

23. The transactional memory of claim 16, wherein the get
from one of a set of rings command identifies a set of rings,
wherein the rings of the set have an ordered priority, and
wherein execution of the get from one of a set of rings com-
mand causes the transactional memory to read a value from 5
the highest priority one of the rings that is not empty.

24. The transactional memory of claim 16, wherein there
may be more than two rings in the set.

#* #* #* #* #*

20

